Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle.
نویسندگان
چکیده
South Asian emissions of fossil fuel SO(2) and black carbon increased approximately 6-fold since 1930, resulting in large atmospheric concentrations of black carbon and other aerosols. This period also witnessed strong negative trends of surface solar radiation, surface evaporation, and summer monsoon rainfall. These changes over India were accompanied by an increase in atmospheric stability and a decrease in sea surface temperature gradients in the Northern Indian Ocean. We conducted an ensemble of coupled ocean-atmosphere simulations from 1930 to 2000 to understand the role of atmospheric brown clouds in the observed trends. The simulations adopt the aerosol radiative forcing from the Indian Ocean experiment observations and also account for global increases in greenhouse gases and sulfate aerosols. The simulated decreases in surface solar radiation, changes in surface and atmospheric temperatures over land and sea, and decreases in monsoon rainfall are similar to the observed trends. We also show that greenhouse gases and sulfates, by themselves, do not account for the magnitude or even the sign in many instances, of the observed trends. Thus, our simulations suggest that absorbing aerosols in atmospheric brown clouds may have played a major role in the observed regional climate and hydrological cycle changes and have masked as much as 50% of the surface warming due to the global increase in greenhouse gases. The simulations also raise the possibility that, if current trends in emissions continue, the subcontinent may experience a doubling of the drought frequency in the coming decades.
منابع مشابه
Exploring NOy chemistry in levitated aqueous aerosol droplets
Atmospheric aerosol Atmospheric aerosol is a variable, yet critical component of the climate system and has substantial impact on climate change. [1-3] Aerosols affect climate directly, by scattering and absorbing solar radiation, and indirectly, by acting as cloud condensation nuclei, CCN. Clouds may reduce the incident radiation on the surface, increase or decrease temperatures, and suppress ...
متن کاملDiscovery of Fog at the South Pole of Titan
While Saturn’s moon Titan appears to support an active methane hydrological cycle, no direct evidence for surface-atmosphere exchange has yet appeared. It is possible that the identified lake-features could be filled with ethane, an involatile long term residue of atmospheric photolysis; the apparent stream and channel features could be ancient from a previous climate; and the tropospheric meth...
متن کاملIntegrated model shows that atmospheric brown clouds and greenhouse gases have reduced rice harvests in India.
Previous studies have found that atmospheric brown clouds partially offset the warming effects of greenhouse gases. This finding suggests a tradeoff between the impacts of reducing emissions of aerosols and greenhouse gases. Results from a statistical model of historical rice harvests in India, coupled with regional climate scenarios from a parallel climate model, indicate that joint reductions...
متن کاملClimate effects of dust aerosols over East Asian arid and semiarid regions
East Asia is a major dust source in the world. Mineral dusts in the atmosphere and their interactions with clouds and precipitation have great impacts on regional climate in Asia, where there are large arid and semiarid regions. In this review paper, we summarize the typical transport paths of East Asian dust, which affect regional and global climates, and discuss numerous effects of dust aeros...
متن کاملObserved Land Impacts on Clouds, Water Vapor, and Rainfall at Continental Scales
How do the continents affect large-scale hydrological cycles? How important can one continent be to the climate system? To address these questions, five years of National Aeronautics and Space Administration (NASA) Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations, Tropical Rainfall Measuring Mission (TRMM) observations, and the Global Precipitation Climatology Project (G...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 102 15 شماره
صفحات -
تاریخ انتشار 2005